题目内容

【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9

(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长

【答案】
(1)

解:∵CD切半圆于点D,OD为⊙O的半径,

∴CD⊥OD,

∴∠CDO=90°,

∵BE⊥CD于点E,

∴∠E=90°.

∵∠CDO=∠E=90°,∠C=∠C,

∴△COD∽△CBE.


(2)

解:∵在Rt△BEC中,CE=12,BE=9,

∴CE=15,

∵△COD∽△CBE,

,

,

∴r=.


【解析】(1)根据CD切半圆于点D,BE⊥CD于点E,得出∠CDO=∠E=90°,根据三角形两个角对应相等的两个三角形相似得出△COD∽△CBE.
(2)根据(1)中△COD∽△CBE,得出 , 从而求出半径。
【考点精析】利用切线的性质定理和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

【题目】我们来定义下面两种数:

(一)平方和数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数.

例如:对于整数251.它中间的数字是5,最左边数是2,最右边数是1

是一个平方和数

又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4

是一个平方和数.当然1524253这两个数也是平方和数;

(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=最左边数最右边数,我们就称该整数为双倍积数.

例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3

是一个双倍积数,

又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5

是一个双倍积数,当然3615303这两个数也是双倍积数.

注意:在下面的问题中,我们统一用字母表示一个整数分拆出来的最左边数,用字母表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:

1)①若一个三位整数为平方和数,且十位数为4,则该三位数为________

②若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_________

③若一个整数既为平方和数,又是双倍积数,则应满足的数量关系为_______

2)若(即这是个最左边数为,中间数为565,最右边数为的整数,以下类同)是一个平方和数,是一个双倍积数,求的值.

3)从所有三位整数中任选一个数为双倍积数的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网