题目内容
【题目】如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.
【答案】.
【解析】
首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.
解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,BBi,
∵AO⊥AB1,AP⊥ABi,
∴∠OAP=∠B1ABi,
又∵AB1=AOtan30°,ABi=APtan30°,
∴AB1:AO=ABi:AP,
∴△AB1Bi∽△AOP,
∴∠B1Bi=∠AOP.
同理得△AB1B2∽△AON,
∴∠AB1B2=∠AOP,
∴∠AB1Bi=∠AB1B2,
∴点Bi在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).
由图形2可知:Rt△APB1中,∠APB1=30°,
∴
Rt△AB2N中,∠ANB2=30°,
∴
∴
∵∠PAB1=∠NAB2=90°,
∴∠PAN=∠B1AB2,
∴△APN∽△AB1B2,
∴,
∵ON:y=﹣x,
∴△OMN是等腰直角三角形,
∴OM=MN=,
∴PN=,
∴B1B2=,
综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.
故答案为:.
【题目】某微商销售的某商品每袋成本20元,设销售价格为x(单位:元/袋),该微商发现销售量y与销售价格x之间的关系如表:
销售价格x(元/袋) | 25 | 30 | 35 | 40 |
销售件数y | 275 | 250 | 225 | 200 |
(1)求y关于x的函数表达式;
(2)根据物价部门的规定,商品的利润率不能超过100%,该微商应该如何定价,才能使获得的利润最大,最大利润是多少?