题目内容
【题目】如图①是一个长为,宽为的长方形,沿虚线用剪刀平均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)图②中阴影部分的正方形的边长为
(2)观察图②,三个代数式之间的数量关系式是 .
(3)观察图③,写出一个代数恒等式: .
(4)在下面的虚线框中画出一个几何图形,使它的面积能表示成
【答案】(1)m-n;(2)(m+n)2-4mn=(m-n)2;(3)(2m+n)(m+n)=2m(m+n)+n(m+n);(4)见解析.
【解析】
(1)由图形可以得出阴影部分的边长即小长方形的长减去小长方形的宽;
(2)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m-n)2、mn之间的等量关系.
(3)利用两种不同的方法表示出大矩形的面积即可得出等式.
(4)画出边长分别为(m+n)和(m+2n)长方形即可.
(1)图②中的阴影部分的正方形边长为m-n;
(2)(m+n)2-4mn=(m-n)2;
(3)(2m+n)(m+n)=2m(m+n)+n(m+n).
(4)如图所示:
故答案为:(1)(m-n)2、(2)(m+n)2-4mn=(m-n)2、(3)(2m+n)(m+n)=2m(m+n)+n(m+n).
练习册系列答案
相关题目