题目内容

【题目】已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点MN,连接MN

(1)求证:△ABM∽△NDA

(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.

【答案】(1)证明见解析;(2)当∠BAM=22.5°时,四边形BMND为矩形,证明见解析.

【解析】分析:(1)由正方形ABCDBMDN分别是正方形的两个外角平分线,可证得∠ABM=ADN=135°,又由∠MAN=45°,可证得∠BAM=AND=45°-DAN,即可证得ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.

本题解析:(1)∵四边形ABCD是正方形,

∴∠DAB=∠ADC=∠ABC=90°,AB=AD.∵∠PAQ=45°∴∠1+∠2=45°,

ND平分∠FDCMB平分∠EBC,∴∠EBM=∠FDN=45°,∴∠ABM=∠ADN=135°∠2+∠3=45° ,∴∠1=∠3 ∴△ABM∽△NDA

(2)当∠BAM=22.5°时,四边形BMND为矩形

理由:∵∠1=22.5°,∠EBM=45°∴∠4=22.5°,∴∠1=∠4,∴AB=BM

同理AD=DNAB=ADBM=DN ∵四边形ABCD是正方形∴∠ABD=∠ADB=45°

∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°∴BMDN

∴四边形BMND为平行四边形

∵∠BDN=90°∴四边形BMND为矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网