题目内容
已知抛物线y===ax2+2ax+4(0
- A.y1< y2
- B.y1= y2
- C.y1> y2
- D.y1与y2的大小不能确定
C
分析:可以运用“作差法”比较y1<与y2的大小,y1与y2是自变量取x1、x2时,对应的函数值,代值后对式子因式分解,判断结论的符号即可.解:将x1代入抛物线,得y1=ax12+2ax1+4,将x2代入抛物线,得y2=ax22+2ax2+4,y1-y2=a(x12-x22)+2a(x1-x2)=a(x1-x2)(x1+x2)+2a(x1-x2)=a(x1-x2)(x1+x2+2)∵x1+x2=1-a,∴y1-y2=a(x1-x2)(3-a),∵0<a<3,x1>x2,∴y1-y2<0,即y1>y2.故选C.
分析:可以运用“作差法”比较y1<与y2的大小,y1与y2是自变量取x1、x2时,对应的函数值,代值后对式子因式分解,判断结论的符号即可.解:将x1代入抛物线,得y1=ax12+2ax1+4,将x2代入抛物线,得y2=ax22+2ax2+4,y1-y2=a(x12-x22)+2a(x1-x2)=a(x1-x2)(x1+x2)+2a(x1-x2)=a(x1-x2)(x1+x2+2)∵x1+x2=1-a,∴y1-y2=a(x1-x2)(3-a),∵0<a<3,x1>x2,∴y1-y2<0,即y1>y2.故选C.
练习册系列答案
相关题目