题目内容

【题目】正方形四边条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)如图1,当点E在线段BC上(不与点B、C重合)时:

①判断△ADG与△ABE是否全等,并说明理由;
②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;
(2)如图2,当点E在射线CN上(不与点C重合)时:

①判断△ADG与△ABE是否全等,不需说明理由;
②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.

【答案】
(1)解:①△BAE≌△DAG.理由如下:

∵四边形ABCD和四边形AEFG是正方形,

∴AB=AD,AE=AG,∠BAD=∠EAG=90°,

∴∠BAE+∠EAD=∠DAG+∠EAD,

∴∠BAE=∠DAG.

∴△BAE≌△DAG;

②CH=BE.理由如下:

由已知可得∠EAG=∠BAD=∠AEF=90°,

由①得∠FEH=∠BAE=∠DAG,

又∵G在射线CD上,

∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,

∴∠BAE=∠DAG=∠EFH,

∴△EFH≌△GAD,△EFH≌△ABE,

∴EH=AD=BC,

∴CH=BE.


(2)解:①△BAE≌△DAG.理由如下:

∵四边形ABCD和四边形AEFG是正方形,

∴AB=AD,AE=AG,∠ADG=∠ABE=90°,

∴在Rt△BAE与Rt△DAG中,

∴△BAE≌△DAG;(HL)

②由(1)同理可得:△EFH≌△AGD,△EFH≌△AEB,

∴GD=FH=CH=4,

∴△CFH的面积为: FHCH= ×4×4=8


【解析】(1)①利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;②利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;(2)①利用HL定理证明△BAE≌△DAG即可;②利用△EFH≌△GAD,△EFH≌△ABE,即可得出GD=FH=CH=4,再利用△CFH的面积公式求出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网