题目内容
【题目】工人师傅在修茸一人字架屋顶BAC时需要加固,计划焊接三根钢条AD,DE,FG.在如图所示的△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,点E,F,G分别是AB,BD,AC上的点,连接DE,GF,交于点H,GF与AD交于点M,当H为FM的中点,BF∶CF=1∶5,AG:AE=5:7时,△AGM的面积为________.
【答案】
【解析】
过点G作GN∥BC交AD于点N,利用已知条件易证NG∥BC,NG⊥AD,∠B=∠C,∠EAD=∠MAG,同时可求出BD,DC的长,利用勾股定理求出AD的长,结合已知求出BF,CF的长;利用直角三角形的性质,可证得DH=HF=MH,∠ADE=∠FMD=∠AMG,由此可证△BDE∽△CFG,△ADE∽△AMG,利用相似三角形的性质,可求出AM的长及BE与CG的比值;设AG=5m,则AE=7m,用含m的代数式表示出BE,AE的长,由此建立关于m的方程,解方程求出m的值;然后证明△ANG∽△ADC,利用相似三角形的性质求出NG的长,再利用三角形的面积公式求出△AMG的面积.
解:过点G作GN∥BC交AD于点N,
∵AB=AC,AD⊥BC,
∴NG∥BC,NG⊥AD,
∴∠B=∠C,BD=DC=6,∠ADF=90°,∠EAD=∠MAG,
∴;
∵BF:CF=1:5,BC=12,
∴BF+CF=12,
解之:BF=2,CF=10,
在Rt△MDF中,点H是MF的中点,
∴DH=HF=MH,
∴∠BDE=∠CFG,∠ADE=∠FMD=∠AMG,
∵∠BDE=∠CFG,∠B=∠C,
∴△BDE∽△CFG,
∴,
∵∠EAD=∠MAG,∠AMG=∠ADE,
∴△ADE∽△AMG,
∴;
解得:,
设AG=5m,则AE=7m,
∴BE=AB-AE=10-7m,CG=AC-AG=10-5m,
∴,
解得:m=1,
经检验,m=1符合题意,
∴AG=5,
∵NG∥BC,
∴△ANG∽△ADC,
∴ , 即
解之:NG=3.
∴.
故答案为:.