题目内容
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.
(1)①求证:△ABD∽△ACE;
②若CD=1,BD= ,求AD的长.
(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设 = =k,若CD=1,BD=2,AD=3,求k的值.
(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若 = = ,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
【答案】
(1)
解:①∵DE∥BC,
∴ ,
由旋转知,∠EAC=∠DAB,
∴△ABD∽△ACE,
②在Rt△ABC中,AC=BC,
∴AB= AC,
由①知,△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
∵△ABD∽△ACE,
∴ = ,
∴AD= AE,BD= CE,
∵BD= ,
∴CE= ,
在Rt△CDE中,CD=1,CE= ,
根据勾股定理得,DE=2,
在Rt△ADE中,AD=AE,
∴AD= DE=2
(2)
解:由旋转知,∠EAC=∠DAB,
∵ =
∴△ABD∽△ACE,
∴ =k,
∵AD=3,BD=2,
∴AE=kAD=3k,CE=kBD=2k,
∵△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
在Rt△CDE中,DE2=CD2+CE2=1+4k2,
在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,
∴1+4k2=9﹣9k2,
∴k=﹣ (舍)或k=
(3)
解:由旋转知,∠EAC=∠DAB,
∵ =
∴△ABD∽△ACE,
∴ =
∵AD=p,BD=n,
∴AE= AD= p,CE= BD= n,
∵△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
在Rt△CDE中,DE2=CD2+CE2=m2+ n2,
∵DE=AE= p,
∴ p2=m2+ n2,
∴9p2=25m2+9n2
【解析】(1)①先利用平行线分线段成比例定理得, ,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+ n2 , 而DE=AE= p,即可得出结论;