题目内容

【题目】如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.
(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;
(2)如图2,若A、C、F、E共线,连接CD,求证:DC= DF.

【答案】
(1)解:∵△ABC和△BDE都是等腰直角三角形,

∴AC=BC=CD=2,BD=DE=4,BE=4 ,AB=2 ,∠ABC=∠DBE=45°,

∴∠ABE=90°,

∴AE= = =2

∵AF=EF,

∴BF= AE=


(2)证明:作AM∥DE交DF的延长线于M,交BD于N,连接CM.

∵AM∥DE,

∴∠MAE=∠DEF,

在△AFM和△EFD中,

∴△AFM≌△EFD,

∴AM=DE=BD,

∵∠BCE=∠BDE=90°,∠COB=∠DOE,

∴∠CBD=∠DEF=∠MAF.

在△ACM和△BCD中,

∴△ACM≌△BCD,

∴∠ACM=∠BCD,CM=CD,

∴∠ACB=∠MCD=90°

∴△CDM是等腰直角三角形,

易知△BOC∽△EOD,

=

=

∴△BOE∽△COD,

∴∠DCO=∠OBE=45°,

∴∠FCD=∠FCM=45°,∵CM=CD,

∴FM=DF,CF⊥DM,

∴△CDF是等腰直角三角形,

∴CD= DF


【解析】(1)证明△ABE是直角三角形,求出AB、BE,理由勾股定理求出AE,再利用直角三角形斜边中线的性质即可解决问题.(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.只要证明△CDM,△CDF都是等腰直角三角形即可解决问题;
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网