题目内容

【题目】如图,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.

(1)求证:DE∥BF;

(2)若∠G=90°,求证:四边形DEBF是菱形.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)根据已知条件证明BE=DF,BEDF,从而得出四边形DFBE是平行四边形,即可证明DEBF,

(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.

试题解析:(1)∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD.

∵点E、F分别是AB、CD的中点,

∴BE=AB,DF=CD.

∴BE=DF,BE∥DF,

∴四边形DFBE是平行四边形,

∴DE∥BF;

(2)∵∠G=90°,AG∥BD,AD∥BG,

∴四边形AGBD是矩形,

∴∠ADB=90°,

在Rt△ADB中

∵E为AB的中点,

∴AE=BE=DE,

∵四边形DFBE是平行四边形,

∴四边形DEBF是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网