题目内容
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与点B,C重合),过点C作CN⊥DM交AB于点N,连结OM、ON,MN.下列五个结论:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,则S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正确结论是_____;(只填序号)
【答案】①②③⑤
【解析】
①由正方形的性质得出CD=BC,∠BCD=90°,证出∠BCN=∠CDM,由ASA即可得出结论;
②由全等三角形的性质得出CM=BN,由正方形的性质得出∠OCM=∠OBN=45°,OC=OB,由SAS证得△OCM≌△OBN(SAS)即可得出结论;
③由△OCM≌△OBN,得出∠COM=∠BON,则∠BOM+∠COM=∠BOM+∠BON,即可得出结论;
④由AB=2,得出S正方形ABCD=4,由△OCM≌△OBN得出四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,推出△MNB的面积有最大值即可得出结论;
⑤由CM=BN,BM=AN,由勾股定理即可得出结论.
①∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
在△CNB和△DMC中
,
∴△CNB≌△DMC(ASA),
故①正确;
②∵△CNB≌△DMC,
∴CM=BN,
∵四边形ABCD是正方形,
∴∠OCM=∠OBN=45°,OC=OB,
在△OCM和△OBN中,
,
∴△OCM≌△OBN(SAS),
∴OM=ON,
故②正确;
③∵△OCM≌△OBN,
∴∠COM=∠BON,
∴∠BOM+∠COM=∠BOM+∠BON,即∠NOM=∠BOC=90°,
∴ON⊥OM;
故③正确;
④∵AB=2,
∴S正方形ABCD=4,
∵△OCM≌△OBN,
∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,
∴当△MNB的面积最大时,△MNO的面积最小,
设BN=x=CM,则BM=2﹣x,
∴△MNB的面积S=x(2﹣x)=﹣x2+x=﹣(x﹣1)2+,
∴当x=1时,△MNB的面积有最大值,
此时S△OMN的最小值是1﹣=,
故④不正确;
⑤∵AB=BC,CM=BN,
∴BM=AN,
在Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,
故⑤正确;
∴本题正确的结论有:①②③⑤,
故答案为①②③⑤.