题目内容
【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)直接写出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x (h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车出发多长时间后,两车恰好相距40km?
【答案】(1)m=1,a=40,(2);(3)小时或小时.
【解析】
(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;
(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;
(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.
(1)由题意,得
m=1.5-0.5=1.
120÷(3.5-0.5)=40,
∴a=40.
答:a=40,m=1;
(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得
40=k1,
∴y=40x
当1<x≤1.5时,
y=40;
当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得
,
解得:,
∴y=40x-20.
∴;
(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得
解得:,
∴y=80x-160.
当40x-20-40=80x-160时,
解得:x=.
当40x-20+40=80x-160时,
解得:x=.
2=,2=.
答:乙车行驶小时或小时,两车恰好相距40km.
练习册系列答案
相关题目