题目内容

【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).

(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为 . ;
(3)当SBCQ:SABC=1:3,求SAPQ:SABQ的值.

【答案】
(1)

解:由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x

=

∴x=


(2)
cm或20cm
(3)

解:当SBCQ:SABC=1:3时, =

由(1)知,PQ∥BC,

∴△APQ∽△ABC,

∴SAPQ:SABQ=2.


【解析】解: (2)假设两三角形可以相似,
情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,
即有 = 解得x=
经检验,x= 是原分式方程的解.
此时AP= cm,
情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,
即有 = 解得x=5,
经检验,x=5是原分式方程的解.
此时AP=20cm.
综上所述,AP= cm或AP=20cm;
故答案为: cm或20cm;
(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当SBCQ:SABC=1:3时, = ,于是得到 ,通过相似三角形的性质得到 ,即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网