题目内容
【题目】某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:
(1)求yB关于x的函数解析式;
(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?
【答案】
(1)
解:设yB关于x的函数解析式为yB=kx+b(k≠0).
将点(1,0)、(3,180)代入得: ,
解得:k=90,b=﹣90.
所以yB关于x的函数解析式为yB=90x﹣90(1≤x≤6)
(2)
解:设yA关于x的解析式为yA=k1x.
根据题意得:3k1=180.
解得:k1=60.
所以yA=60x.
当x=5时,yA=60×5=300(千克);
x=6时,yB=90×6﹣90=450(千克).
450﹣300=150(千克).
答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克
【解析】(1)设yB关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;
(2)设yA关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA , yB的值,最后求得yA与yB的差即可. 本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.
练习册系列答案
相关题目