题目内容
【题目】在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;
(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F(b,﹣2b+3).
①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;
②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.
【答案】(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).
【解析】
(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.
(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;
②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.
解:(1)∵A(﹣3,0),点C在y轴的正半轴上,
∴向右平移3个单位,
设向上平移x个单位,
∵S△ACO=OA×OC=6,
∴×3x=6,
解得:x=4,
∴点C的坐标为(0,4),
﹣2+3=1,﹣2+4=2,
故点D的坐标为(1,2).
(2)①存在;理由如下:
∵线段EF平行于线段OM且等于线段OM,
∴2a+1=﹣2b+3,|a﹣b|=1,
解得:a=1,b=0或a=0,b=1,
即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);
②存在,理由如下:如图2所示:
当点E、F重合时,,
解得:,
∴2a+1=2,
∴点P的坐标为(,2),
设点E在F的左边,
∵EF∥x轴,
∴2a+1=﹣2b+3,
∴a+b=1,
∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,
即(b﹣a)|2a﹣1|=4,
当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;
当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,
解得:,或;
分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);
综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).
【题目】下表是佳佳往小姨家打长途电话的几次收费标准记录:
回答下列问题:
时间(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
电话费(元) | 0.6 | 1.2 | 1.8 | 2.4 | 3.0 | 3.6 | 4.2 | … |
(1)上表反映了变量 和 之间的关系, 自变量是 ,因变量是 .
(2)帮助佳佳预测一下,如果她打电话用的时间是10分钟,需要付 元电话费;
(3)请你写出通话时间(分钟)(为正整数)与所要付的电话费(元)之间的关系式.