题目内容

【题目】如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,点D距离塔AB所在直线的距离DC为100米,求手机信号中转塔AB的高度(参考数据: ≈1.414, ≈1.732,结果保留整数).

【答案】解:由题意可知,△ACD与△BCD都是直角三角形.
在Rt△BCD中,∵∠BDC=45°,
∴BC=CD=100米.
在Rt△ACD中,∵∠ADC=60°,CD=100米,
∴tan∠ADC= ,即 =
∴AC=100
∴AB=AC﹣BC=100( ﹣1)≈73(米).
答:手机信号中转塔的高度约为73米
【解析】先在Rt△BCD中,根据∠BDC=45°,得出BC=CD=100;再在Rt△ACD中,根据正切函数的定义,求出AC=100 ,然后由AB=AC﹣BC即可求解.
【考点精析】本题主要考查了关于仰角俯角问题的相关知识点,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网