题目内容
【题目】勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直角三角形叙述勾股定理.
以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明.其证明步骤如下:
∵BC=a+b,AD=_____;
又∵在直角梯形ABCD中有BC_____AD(填大小关系),即_____.
∴.
【答案】c<a+b<c
【解析】
(1)根据勾股定理用文字及符号语言叙述;
(2)利用SAS可证△ABE≌△ECD,可得对应角相等,结合90°的角,可证∠AED=90°,利用梯形面积等于三个直角三角形的面积和,可证a2+b2=c2;
(3)在直角梯形ABCD中,,从而可证
如果直角三角形的两直角边长为a,b,斜边长为c,那么a2+b2=c2.
∵Rt△ABE≌Rt△ECD,
∴∠AEB=∠EDC;
又∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°;
∴∠AED=90°;
S梯形ABCD=SRt△ABE+SRt△DEC+SRt△AED
整理得a2+b2=c2.
练习册系列答案
相关题目