题目内容

【题目】如图,正方形ABCD的面积为2 cm2 , 对角线交于点O1 , 以AB、AO1为邻边做平行四边形AO1C1B,对角线交于点O2 , 以AB、AO2为邻边做平行四边形AO2C2B,…,以此类推,则平行四边形AO6C6B的面积为cm2

【答案】
【解析】解:∵设平行四边形ABC1O1的面积为S1 , ∴SABO1= S1
又∵SABO1= S正方形
∴S1= S正方形
设ABC2O2为平行四边形为S2
∴SABO2= S2
又∵SABO2= S正方形
∴S2= S正方形
…,
同理:设ABC6O6为平行四边形为S6 , S6= S正方形= ×2 =
所以答案是

【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网