题目内容

【题目】已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:   

(2)仔细观察,在图2中“8字形”的个数:   

(3)在图2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求P的度数;

(4)如果图2中D和B为任意角时,其他条件不变,试问P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)

【答案】(1)∠A+∠D=∠B+∠C(2)6(3)∠P=38°(4)2∠P=∠B+∠D

【解析】

∠A∠B∠C∠D之间的数量关系根据这四个角分别是两个三角形的内角,根据三角形的内角和定理就可以得到.根据以上的结论,以及角平分线的定义就可以求出∠P的度数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网