题目内容
(2013•南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;
(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.
(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.
解答:证明:(1)∵对角线BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD,
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,
∴∠PMD=∠PND=90°,PM=PN,
∵∠ADC=90°,
∴四边形MPND是矩形,
∵PM=PN,
∴四边形MPND是正方形.
∴∠ABD=∠CBD,
在△ABD和△CBD中,
|
∴△ABD≌△CBD,
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,
∴∠PMD=∠PND=90°,PM=PN,
∵∠ADC=90°,
∴四边形MPND是矩形,
∵PM=PN,
∴四边形MPND是正方形.
点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.
练习册系列答案
相关题目