题目内容
【题目】已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).
(1)证明4c=3b2
(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
【答案】
(1)
证明:依题意,m,-3m是一元二次方程x2+bx-c=0的两根,根据一元二次方程根与系数的关系,得x1+x2=m+(-3m)=-b,x1x2=m(-3m)=-c,
∴b=2m,c=3m2,
∴4c=3b2=12m2;
(2)
解:依题意, =1,即b=-2,由(1)得c= = ×(-2)2=3,
∴y=x2-2x+3=(x-1)2+2,
∴二次函数的最小值为2.
【解析】(1)由根与系数关系得出等式,消去m,得出b、c的关系式;(2)根据对称轴公式可求系数b,代入(1)的结论可求c,可确定二次函数解析式,再求函数的最小值.
【考点精析】根据题目的已知条件,利用根与系数的关系和抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
练习册系列答案
相关题目