题目内容
【题目】如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.
(1)求证:PC是⊙O的切线;
(2)若PD=cm,AC=8cm,求图中阴影部分的面积;
(3)在(2)的条件下,若点E是弧AB的中点,连接CE,求CE的长.
【答案】(1)证明见解析;
(2)阴影部分的面积为;
(3)CE的长是
【解析】(1)连接OC,证明△PAO≌△PCO,得到∠PAO=∠PCO=90 ,证明结论;
(2)证明△ADO∽△PDA,得到成比例线段求出BC的长,根据S阴=S半⊙O-S△ACB求出答案;
(3)连接AE,BE,过点B作BM⊥CE于点M,分别求出CM和EM的长,求和得到答案.
证明: ⑴如图,连接OC,
∵PA切⊙O于A.
∴∠PAO=90.
∵OP∥BC,
∴∠AOP=∠OBC,∠COP=∠OCB.
∵OC=OB,
∴∠OBC=∠OCB,
∴∠AOP=∠COP.
又∵OA=OC,OP=OP,
∴△PAO≌△PCO (SAS).
∴∠PAO=∠PCO=90 ,
又∵OC是⊙O的半径,
∴PC是⊙O的切线.
⑵解法一:
由(1)得PA,PC都为圆的切线,
∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90 ,
∴∠PAD+∠DAO=∠DAO+∠AOD,
∴∠PAD =∠AOD,
∴△ADO∽△PDA.
∴,
∴,
∵AC=8, PD=,
∴AD=AC=4,OD=3,AO=5,
由题意知OD为△ABC的中位线,
∴BC=2OD=6,AB=10.
∴S阴=S半⊙O-S△ACB=.
答:阴影部分的面积为.
解法二:
∵AB是⊙O的直径,OP∥BC,
∴∠PDC=∠ACB=90.
∵∠PCO=90 ,
∴∠PCD+∠ACO=∠ACO+∠OCB=90 ,
即∠PCD=∠OCB.
又∵∠OBC =∠OCB,
∴∠PCD=∠OBC,
∴△PDC∽△ACB,
∴.
又∵AC=8, PD=,
∴AD=DC=4,PC=.
∴,
∴CB=6,AB=10,
∴S阴=S半⊙O-S△ACB=.
答:阴影部分的面积为.
(3)如图,连接AE,BE,过点B作BM⊥CE于点M.
∴∠CMB=∠EMB=∠AEB=90,
又∵点E是的中点,
∴∠ECB=∠CBM=∠ABE=45,CM=MB =,BE=ABcos45=,
∴ EM=,
∴CE=CM+EM=.
“点睛”本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.