题目内容
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )
A. 6 B. 5 C. 4 D. 8
【答案】A
【解析】
根据∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥AD于E,于是得到∠ACE+∠CAE=90°,根据余角的性质得到∠BAD=∠ACE,推出△ABD≌△CEA,根据全等三角形的性质即可得到结论.
解:∵∠BAC=90°,AB=AC,
∴∠BAD+∠CAD=90°,
∵CE⊥AD于E,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD与△ACE中,
,
∴△ABD≌△CEA(AAS),
∴AE=BD=4,AD=CE=10,
∴DE=AD﹣AE=6.
故选:A.
练习册系列答案
相关题目