题目内容
【题目】综合题。
(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
【答案】
(1)解:如图1,连接BE,
∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,
又∵AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE,
∴AD=BE,
∵AC=BC=6,
∴AB=6 ,
∵∠BAC=∠CAE=45°,
∴∠BAE=90°,
在Rt△BAE中,AB=6 ,AE=3,
∴BE=9,
∴AD=9;
(2)解:如图2,连接BE,
在Rt△ACB中,∠ABC=∠CED=30°,
tan30°= = ,
∵∠ACB=∠DCE=90°,
∴∠BCE=∠ACD,
∴△ACD∽△BCE,
∴ = = ,
∵∠BAC=60°,∠CAE=30°,
∴∠BAE=90°,又AB=6,AE=8,
∴BE=10,
∴AD= .
【解析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6 ,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到 = = ,求出BE的长,得到AD的长.
【考点精析】关于本题考查的勾股定理的概念和相似三角形的判定与性质,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.
练习册系列答案
相关题目