题目内容
【题目】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )
A. 2 B. 2-1 C. 2.5 D. 2.3
【答案】D
【解析】分析:延长AF至BC延长线上交于G点,由已知可证明∠AGB=∠EAG,则EF为△ABG的中位线,得出EF=3,还可证明FG=4,由勾股定理得EG=5,则求得CE的长为2.3.
详解:延长AF、BC交于点G.
∵AD∥BC,
∴∠D=∠FCG,∠DAF=∠G.
又DF=CF,
∴△AFD≌△GFC.
∴AG=2AF=8,CG=AD=2.7.
∵AF⊥AB,AB=6,
∴BG=10.
∴BC=BG﹣CG=7.3.
∵AE=BE,
∴∠BAE=∠B.
∴∠EAG=∠AGE.
∴AE=GE.
∴BE=BG=5.
∴CE=BC﹣BE=2.3.
故选:D.
练习册系列答案
相关题目