题目内容
【题目】一个自然数的立方,可以分裂成若干个连续奇数的和。例如:和分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此规律来进行“分裂”,则“分裂”出的奇数中,最大的奇数是______.
【答案】41
【解析】
首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决.
解:由23=3+5,分裂中的第一个数是:3=2×1+1,
33=7+9+11,分裂中的第一个数是:7=3×2+1,
43=13+15+17+19,分裂中的第一个数是:13=4×3+1,
53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,
63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,
所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.
故答案为:41.
练习册系列答案
相关题目