题目内容
【题目】如图,四边形ABCD是长方形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为( )
A. 1B. 2C. 3D. 4
【答案】A
【解析】
由矩形和正方形的性质得出AD∥EF∥BC,AB=CD=4,∠B=90°,证出四边形EFCH平行四边形,∠BHE=∠BCF=30°,得出EH=CF=6,由含30°角的直角三角形的性质求出BE=3,得出AE的长,即可得出正方形的面积.
∵四边形ABCD是矩形,四边形AEFG是正方形,
∴AD∥EF∥BC,AB=CD=4,∠B=90°,
又∵EH∥FC,
∴四边形EFCH平行四边形,∠BHE=∠BCF=30°,
∴EH=CF=6,
∴BE=EH=3,
∴AE=AB-BE=4-3=1,
∴正方形AEFG的面积=AE2=1;
故选:A.
练习册系列答案
相关题目
【题目】2017年元旦期间,某商场打出促销广告,如表所示.
优惠 条件 | 一次性购物不超过200元 | 一次性购物超过200元,但不超过500元 | 一次性购物超过500元 |
优惠 办法 | 没有优惠 | 全部按九折优惠 | 其中500元仍按九折优惠,超过500元部分按八折优惠 |
小欣妈妈两次购物分别用了134元和490元.
(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?
(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.