题目内容
【题目】如图所示,△ABC中,D是BC中点,E是AD中点,过点A作BC的平行线交CE的延长线于F,连接BF.
(1)判断并证明四边形AFBD的形状;
(2)当ΔABC满足什么条件时,四边形AFBD是矩形,证明你的结论.
【答案】(1)见解析 (2)见解析
【解析】
(1)由于E是AD中点,则AE=DE,而AF∥BC,那么∠FAE=∠CDE,又∠AEF=∠DEC,利用ASA可证△AFE≌△DCE,于是有AF=CD,又AD是中线,则BD=CD,等量代换有AF=BD;
(2)结论:AB=AC.由(1)知四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
解:(1)四边形AFBD是平行四边形.
理由如下:∵点E是AD的中点,
∴AE=DE,
又∵AF∥BD,
∴∠FAE=∠CDE,
又∵∠FEA=∠CED,
∴△AFE≌△DCE(ASA),
∴AF=CD,
又∵AD是BC边上的中线,
∴BD=CD,
∴AF=BD,
∵AF∥BD,
∴四边形AFBD是平行四边形.
(2)当AB=AC时,四边形AFBD是矩形.
理由如下:
∵AB=AC,BD=CD,
∴AD⊥BC,
∴∠ADB=90°,
∵四边形AFBD为平行四边形,
∴四边形AFBD为矩形.
练习册系列答案
相关题目