题目内容
【题目】如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.
(1)求一次函数y=kx+b(k≠0)的表达式;
(2)若△ACE的面积为11,求点E的坐标;
(3)当∠CBE=∠ABO时,点E的坐标为 .
【答案】(1)一次函数y=kx+b的表达式为y=x﹣6;(2)E(8,2);(3)(11,3).
【解析】
(1)利用待定系数法进行求解即可得;
(2)如图,记直线l与y轴的交点为D,通过证明△OBC∽△OCD,根据相似三角形的性质可求得OD的长,继而可得点D的坐标,再根据点C坐标利用待定系数法求出直线l的解析式为y=x﹣,设E(t,t﹣t),然后根据S△ACE=AC×yE=11,求得t的值即可得解;
(3)如图,过点E作EF⊥x轴于F,可证得△ABO∽△EBC,从而可得,再证明△BOC∽△CFE,可得,从而可得出CF=9,EF=3,继而得到OF=11,即可得点E坐标.
(1)∵一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,
∴,∴,
∴一次函数y=kx+b的表达式为y=x﹣6;
(2)如图,记直线l与y轴的交点为D,
∵BC⊥l,
∴∠BCD=90°=∠BOC,
∴∠OBC+∠OCB=∠OCD+∠OCB,
∴∠OBC=∠OCD,
∵∠BOC=∠COD,
∴△OBC∽△OCD,
∴,
∵B(0,6),C(2,0),
∴OB=6,OC=2,
∴,
∴OD=,
∴D(0,﹣),
∵C(2,0),
∴直线l的解析式为y=x﹣,
设E(t,t﹣t),
∵A(﹣9,0),C(2,0),
∴S△ACE=AC×yE=×11×(t﹣)=11,
∴t=8,
∴E(8,2);
(3)如图,过点E作EF⊥x轴于F,
∵∠ABO=∠CBE,∠AOB=∠BCE=90°
∴△ABO∽△EBC,
∴,
∵∠BCE=90°=∠BOC,
∴∠BCO+∠CBO=∠BCO+∠ECF,
∴∠CBO=∠ECF,
∵∠BOC=∠EFC=90°,
∴△BOC∽△CFE,
∴,
∴,
∴CF=9,EF=3,
∴OF=11,
∴E(11,3),
故答案为(11,3).