题目内容
【题目】如图,在等边△ABC中,DE分别是AB,AC上的点,且AD=CE.
(1)求证:BE=CD;
(2)求∠1+∠2的度数.
【答案】
(1)证明:∵△ABC是等边三角形,
∴∠A=∠ACB=60°,AC=BC,
在△ACD和△CBE中
∴△ACD≌△CBE(SAS),
∴BE=CD;
(2)解:∵△ACD≌△CBE,
∴∠1=∠ACD,
∴∠1+∠2=∠ACD+∠2=∠ACB=60°.
【解析】(1)首先根据等边三角形的性质可得到∠A=∠ACB=60°,AC=BC,然后,再利用SAS证明△ACD≌△CBE,最后,依据全等三角形对应边相等进行证明即可;
(2)依据全等三角形对应角相等可得到 ∠1=∠ACD,通过等量代换可得到∠1+∠2=∠ACB,故此可得到问题的答案.
【考点精析】掌握等边三角形的性质是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目