题目内容
【题目】比﹣4小2的数是( )A.﹣1B.﹣2C.﹣6D.0
【答案】C【解析】解:根据题意得:﹣4﹣2=﹣6, 故选C根据题意列出算式,计算即可得到结果.
【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)
【题目】如图所示有一块直角三角形纸片,两直角边分别为:AC =6cm,BC = 8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A.2 cmB.3 cmC.4 cmD.5 cm
【题目】某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:
原式=a2+2ab﹣(a2﹣b2) (第一步)
=a2+2ab﹣a2﹣b2(第二步)
=2ab﹣b2(第三步)
(1)该同学解答过程从第_____步开始出错,错误原因是____________;
(2)写出此题正确的解答过程.
【题目】小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.
(1)请利用树状图或列表法或枚举法描述三人获胜的概率;
(2)分别求出小强、小亮、小文三位同学获胜的概率,并回答谁赢的概率最小.
【题目】如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )
A. 六边形 B. 五边形 C. 四边形 D. 三角形
【题目】一元二次方程x2+3x﹣4=0的两根分别为 .
【题目】构造一个根为2和3的一元二次方程(写一个即可,不限形式)
【题目】钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)