题目内容
【题目】钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)
【答案】3.4km
【解析】试题分析:在Rt△ACM和在Rt△BCN中,利用正切函数解答.
试题解析:
解:在Rt△ACM中,tan∠CAM=tan42°= =1,∴AC≈16km,
∴BC=AC﹣AB=16﹣4=12km,
在Rt△BCN中,tan∠CBN=tan56°= ,∴CN≈17.76km,∴MN≈3.4km.
答:钓鱼岛东西两端MN之间的距离约为3.4km.
练习册系列答案
相关题目
【题目】某山区有23名中小学生因贫困失学需要捐助,资助一名中学生需要学习费用a元,资助一名小学生需要学习费用b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好能帮助的贫困中学生和小学生人数的部分情况如下表:
七年级 | 八年级 | 九年级 | |
捐款数额(元) | 4000 | 4200 | 7400 |
捐助贫困中学生(名) | 2 | 3 | |
捐助贫困小学生(名) | 4 | 3 |
(1)求a、b的值;
(2)九年级学生的捐款解决了其余贫困中小学生的学习费用,请将九年级学生可捐助的贫困中、小学生人数直接填入上表中(不需要写出计算过程).