题目内容
【题目】端午节放假期间,某学校计划租用辆客车送名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车辆,租车总费用为元.
甲种客车 | 乙种客车 | |
载客量(人/辆) | ||
租金(元/辆) |
(1)求出(元)与(辆)之间函数关系式;
(2)求出自变量的取值范围;
(3)选择怎样的租车方案所需的费用最低?最低费用多少元?
【答案】(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
【解析】
(1)根据租用甲种客车x辆,则租用乙种客车(6-x)辆,进而表示出总租金即可.
(2)由实际生活意义确定自变量的取值范围.
(3)由题意可列出一元一次不等式方程组.由此推出y随x的增大而增大.
解:(1)设租用甲种客车辆,则租用乙种客车辆,
由题意可得出:;
(2)由得:.
又,
的取值范围是:,且为整数;
(3),且为整数,
取或或
中
随的增大而增大
当时,的值最小.
其最小值元.
则租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
故答案为:(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
练习册系列答案
相关题目