题目内容
【题目】点在数轴上所对应的数分别是
,其中
满足
.
(1)求的值;
(2)数轴上有一点,使得
,求点
所对应的数;
(3)点为
中点,
为原点,数轴上有一动点
,求
的最小值及点
所对应的数的取值范围.
【答案】(1);(2)点
所对应的数为
或
;(3)设点P所表示的数为p,当-6≤p≤-1时,
最小,且最小值为9
【解析】
(1)根据平方和绝对值的非负性即可求出a、b的值;
(2)先求出AB的值,设点C表示的数为c,然后根据点C的位置分类讨论,分别画出图形,利用含c的式子表示出AC和BC,列出对应的方程即可求出;
(3)根据中点公式求出点D所表示的数,设点P所表示的数为p,根据点P与点O的相对位置分类讨论,画出相关的图形,分析每种情况下取最小值时,点P的位置即可.
解:(1)∵,
∴
解得:;
(2)由(1)可得:AB=4-(-6)=10
设点C表示的数为c
①当点C在点B左侧时,如下图所示
∴AC=4-c,BC=-6-c
∵
∴
解得:c=;
②当点C在线段AB上时,如下图所示:
此时AC+BC=AB
故不成立;
③当点C在点A右侧时,如下图所示
∴AC=c-4,BC= c -(-6)=c+6
∵
∴
解得:c=;
综上所述:点所对应的数为
或
;
(3)∵点D为AB的中点
所以点D表示的数为
设点P所表示的数为p
①当点P在点O左侧时,如以下三个图所示,此时PA-PO=AO=4
∴
即当取最小值时,
也最小
由以下三个图可知:当点P在线段BD上时,最小,此时
∴此时
即当-6≤p≤-1时,最小,且最小值为9;
②当点P在点O右侧时,如以下两个图所示,此时PB-PO=OB=6
∴
即当取最小值时,
也最小
由以下两个图可知:当点P在线段OA上时,最小,此时
∴此时
即当0≤p≤4时,最小,且最小值为11;
综上所述:当-6≤p≤-1时,最小,且最小值为9.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】端午节放假期间,某学校计划租用辆客车送
名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车
辆,租车总费用为
元.
甲种客车 | 乙种客车 | |
载客量(人/辆) | ||
租金(元/辆) |
(1)求出(元)与
(辆)之间函数关系式;
(2)求出自变量的取值范围;
(3)选择怎样的租车方案所需的费用最低?最低费用多少元?
【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:
A | B | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 400 | 280 |
红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
车辆数(辆) | 载客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保证租车费用不超过1900元,求x的最大值;
(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.