题目内容

【题目】如图,在△ABC中,ABAC,∠BAC30°,将△ABC绕点A逆时针旋转α(30α150)得到△AB′C′BC两点的对应点分别为点B′C′,连接BC′BCACAB′相交于点EF

(1)α70时,∠ABC′_____°,∠ACB′______°

(2)求证:BC′CB′

【答案】(1)4070(2)证明见解析.

【解析】

1)由旋转的性质可得ABACAB'AC',∠CAC'70°,∠B'AC'=∠BAC30°,由等腰三角形的性质可求解;

2)由旋转的性质和等腰三角形的性质可得∠ABC',∠ACB',由三角形的外角性质可得∠AEF=∠ACB',即可得BC'CB'

(1)∵将ABC绕点A逆时针旋转α度得到AB′C′,且ABAC,∠BAC30°

ABACAB'AC',∠CAC'70°,∠B'AC'=∠BAC30°

∴∠BAC'100°,且ABAC'

∴∠ABC'40°

∵∠CAB'=∠CAC'﹣∠B'AC'40°,且ACAB'

∴∠ACB'70°

故答案为4070

(2)∵将ABC绕点A逆时针旋转α度得到AB′C′,且ABAC,∠BAC30°

ABACAB'AC',∠CAC'α,∠B'AC'=∠BAC30°

∴∠BAC'30°+α,∠CAB'α30°,且ABACAB'AC'

∴∠ABC',∠ACB'

∵∠AEF=∠ABE+BAC

∴∠AEF

∴∠AEF=∠ACB'

BC'B'C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网