题目内容
【题目】如图所示,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )
A.3组B.4组C.5组D.6组
【答案】D
【解析】
先根据题意AB∥CD,AD∥BC,可得多对角相等,再利用平行四边形的性质可得线段相等,所以有△AFO≌△CEO,△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共6对.
∵AB∥CD,AD∥BC
∴∠ABD=∠CDB,∠ADB=∠CDB
又∵BD=DB
∴△ABD≌△CDB
∴AB=CD,AD=BC
∵OA=OC,OB=OD
∴△ABO≌△CDO,△BOC≌△DOA
∵OB=OD,∠CBD=∠ADB,∠BOF=∠DOE
∴△BFO≌△DEO
∴OE=OF
∵OA=OC,∠COF=∠AOE
∴△COF≌△AOE
∵AB=DC,BC=AD,AC=AC
∴△ABC≌△DCA,
共6组;
故选:D.
练习册系列答案
相关题目
【题目】某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 600 | 450 |
已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.
(1)求最多能租用多少辆A型号客车?
(2)若七年级的师生共有380人,请写出所有可能的租车方案.