题目内容
【题目】某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 600 | 450 |
已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.
(1)求最多能租用多少辆A型号客车?
(2)若七年级的师生共有380人,请写出所有可能的租车方案.
【答案】(1)最多能租用7辆A型号客车;(2)有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.
【解析】
(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,根据总租金=600×租用A型号客车的辆数+450×租用B型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论;
(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,根据座位数=45×租用A型号客车的辆数+30×租用B型号客车的辆数结合师生共有380人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论及x为整数,即可得出各租车方案.
解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,
依题意,得:600x+450(10﹣x)≤5600,
解得:x≤7.
又∵x为整数,
∴x的最大值为7.
答:最多能租用7辆A型号客车.
(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,
依题意,得:45x+30(10﹣x),≥380,
解得:x≥5.
又∵x为整数,且x≤7,
∴x=6,7.
∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.