题目内容
【题目】如图,抛物线 与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
【答案】(1)二次函数的解析式为,顶点坐标为(–1,4);(2)点P横坐标为––1;(3)当时,四边形PABC的面积有最大值,点P().
【解析】试题分析: (1)已知抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,由此列出方程组,解方程组求得a、b、c的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x的值,即可得点P的横坐标,从而求得点P的坐标;(3)设点P(,),则 ,根据得出四边形PABC与x之间的函数关系式,利用二次函数的性质求得x的值,即可求得点P的坐标.
试题解析:
(1)∵抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,
∴ , 解得:,
∴二次函数的解析式为 =,
∴顶点坐标为(﹣1,4)
(2)设点P(,2),
即=2,
解得=﹣1(舍去)或=﹣﹣1,
∴点P(﹣﹣1,2).
(3)设点P(,),则 ,
,
∴ =
∴当时,四边形PABC的面积有最大值.
所以点P().
练习册系列答案
相关题目