题目内容
【题目】如图,在正方形中,
是对角线
与
的交点,
是
边上的动点(点
不与
重合),过点
作
垂直
交
于点
,连结
.下列四个结论:①
;②
;③
;④若
,则
的最小值是1.其中正确结论是( )
A.①②③B.①③④C.①②④D.②③④
【答案】A
【解析】
根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,△OCM≌△OBN,,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
∵正方形ABCD中,CD=BC,∠BCD=90,
∴∠BCN+∠DCN=90,
又∵CN⊥DM,
∴∠CDM+∠DCN=90,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90,
∴△CNB≌△DMC(ASA),
∴BN=CM,
故AN=BM
∵AO=BO,∠OAN=∠OBM=45°,
∴△AON≌△BOM,
∵BO=CO,∠OCM=∠OBN =45°,
∴△OCM≌△OBN,
∴=S△OBN+ S△BOM= S△OBN+S△AON=S△AOB=
即,①正确;
∵△AON≌△BOM,
∵∠MON=∠BOM+∠BON=∠AON +∠BON=90°,ON=OM
∴△MNO是等腰直角三角形,
∴MN=
∵△MNB是直角三角形,
∴
又CM=BN
∴
即,②正确;
∵∠CON=90°+∠BON, ∠DOM=90°+∠COM,∠BON=∠COM
∴∠CON=∠DOM
又CO=DO, ON=OM,
∴,③正确;
④∵AB=2,
∴S正方形ABCD=4,
∵△OCM≌△OBN,
∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,
∴当△MNB的面积最大时,△MNO的面积最小,
设BN=x=CM,则BM=2x,
∴△MNB的面积=x(2x)=
x2+x=
(x1)2+
,
∴当x=1时,△MNB的面积有最大值,
此时S△OMN的最小值是1 =
,
故④不正确;
![](http://thumb.zyjl.cn/images/loading.gif)