题目内容
【题目】在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.
(1)如图1,若AB=1,DG=2,求BH的长;
(2)如图2,连接AH,GH.
小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;
想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…
请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)
【答案】(1);(2)证明见解析.
【解析】
(1)先根据勾股定理得出BD,DF,进而求出BF,即可得出结论;
(2)想法1、先判断△ABH≌△MFH,进而判断出△ADG≌△MFG.即可判断出△AGM为等腰直角三角形,即可得出结论;
想法2、先判断出MN=BF.进而判断出△AMH≌△HNG,即可判断出∠AHM+∠GHN=90°.即可得出结论.
(1)∵正方形中ABCD和正方形DEFG,∴△ABD,△GDF为等腰直角三角形.
∵AB=1,DG=2,∴由勾股定理得BD=,DF=2.
∵B、D、F共线,∴BF=3.
∵H是BF的中点,∴BH=BF=.
(2)想法1:
如图1,延长AH交EF于点M,连接AG,GM.
∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AB∥EF,∴∠ABH=∠MFH.
又∵BH=FH,∠AHB=∠MHF,∴△ABH≌△MFH,∴AH=MH,AB=MF.
∵AB=AD,∴AD=MF.
∵DG=FG,∠ADG=∠MFG=90°,∴△ADG≌△MFG,∴∠AGD=∠MGF,AG=MG.
又∵∠DGM+∠MGF=90°,∴∠AGD+∠DGM=∠AGM=90°,∴△AGM为等腰直角三角形.
∵AH=MH,∴AH=GH,AH⊥GH.
想法2:
如图2,连接AC,GE分别交BF于点M,N.
∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AC⊥BF,GE⊥BF,DM=AM=BD,DN=GN=DF,∴∠AMD=∠GNH=90°,MN=BF.
∵H是BF的中点,∴BH=BF,∴BH=MN,∴BH﹣MH=MN﹣MH,∴BM=HN.
∵AM=BM=DM,∴AM=HN=DM,∴MD+DH=NH+DH,∴MH=DN.
∵DN=GN,∴MH=GN.
在△AMH和△HNG中,∵AM=HN,∠AMD=∠HNG,MH=NG,∴△AMH≌△HNG,∴AH=GH,∠AHM=∠HGN.
∵∠HGN+∠GHN=90°,∴∠AHM+∠GHN=90°,∴∠AHG=90°,∴AH⊥GH,∴AH=GH,AH⊥GH.