题目内容
【题目】已知直线l上有一点O,点A,B同时从O出发,在直线l上分别向左,向右作匀速运动,且A,B的速度之比是1:2,设运动时间为ts,
(1)当t=2s时,AB=24cm,此时,
①在直线l上画出A,B两点运动2s时的位置,并回答点A运动的速度是 cm/s,点B的运动速度是 cm/s;
②若点P为直线l上一点,且PA=OP+PB,求 的值;
(2)在(1)的条件下,若A,B同时按原速度向左运动,再经过几秒,OA=3OB?
【答案】(1)①4,8;②或1;(2) 再经过或秒时OA=2OB
【解析】
(1)①设A的速度为xcm/s,B的速度为2xcm/s,根据2s相距的距离为24cm建立方程求出其解即可;
②分情况讨论如图2,如图3,建立方程求出OP的值就可以求出结论;
(2)设A、B同时按原速向左运动,再经过a秒OA=3OB,根据追击问题的数量关系建立方程求出其解即可.
(1)①设点A运动的速度为xcm/s,点B的运动速度为2xcm/s,由题意,得
2x+4x=24,
解得:x=4,
即点A运动的速度是4cm/s,点B的运动速度是8cm/s;
②如图2,当P在线段AB之间时,
∵PA=OA+OP,PA=OP+PB,
∴OA+OP=OP+PB,
∴OA=PB=8,
∴OP=8.
∴.
如图3,当P在AB的延长线上时,
∵PA=OA+OP,PA=OP+PB,
∴OA+OP=OP+PB,
∴OA=PB=8,
∴OP=24.
∴.
答:=或1;
(2)设A、B同时按原速向左运动,再经过a秒OA=3OB,由题意,得
4a+8=3(16﹣8a)或4a+8=3(8a﹣16),
解得:a=或.
答:再经过或秒时OA=2OB.
练习册系列答案
相关题目