题目内容

【题目】如图,在ABC中,∠C=90°,AB=10,cosB=,点MAB边的中点,将ABC绕着点M旋转,使点C与点A重合,点A与点D重合,点B与点E重合,得到DEA,且AECB于点P,那么线段CP的长是__________

【答案】

【解析】

连接PM,根据∠B的正切值设AC=3k,BC=4k,利用勾股定理列式求出k值,得到AC、BC的长,根据直角三角形斜边上的中线等于斜边的一半可得AM=DM=EM,再根据等边对等角的性质可得∠EAM=∠E,然后求出∠EAM=∠B,根据等腰三角形三线合一的性质可得PM⊥AB,然后求出△ABC和△PMB相似,根据相似三角形对应边成比例列式求出PB的长,再根据CP=BC-PB代入数据进行计算即可得解.

解:连接PM,

Rt△ABC中,tanB=
∴设AC=3k,BC=4k,
则(3k)2+(4k)2=102
解得k=2,
∴AC=3×2=6,BC=4×2=8,
∵点MAB边的中点,△DEA是△ABC绕点M旋转得到,
∴AM=MB=DM=EM=5,
∴∠EAM=∠E,
又∵∠B=∠E,
∴∠EAM=∠B,
∴△APB是等腰三角形,
∵点MAB的中点,
∴PM⊥AB,
∴△ABC∽△PMB,


解得PB=
∴CP=BC-PB=8-=
故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网