题目内容
【题目】已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:
(1)△ABF∽△BED;
(2) = .
【答案】
(1)证明:∵四边形ABCD是菱形,
∴AC⊥BD,AB∥CD,
∴△ABF∽△CEF,
∵BE⊥DC,
∴∠FEC=∠BED,
由互余的关系得:∠DBE=∠FCE,
∴△BED∽△CEF,
∴△ABF∽△BED
(2)证明:∵AB∥CD,
∴ ,
∴ ,
∵△ABF∽△BED,
∴ ,
∴ =
【解析】(1)由菱形的性质得出AC⊥BD,AB∥CD,得出△ABF∽△CEF,由互余的关系得:∠DBE=∠FCE,证出△BED∽△CEF,即可得出结论;(2)由平行线得出 ,由相似三角形的性质得出 ,即可得出结论.
【考点精析】掌握菱形的性质和相似三角形的判定与性质是解答本题的根本,需要知道菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A.抛物线于x轴的一个交点坐标为(﹣2,0)
B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0
D.抛物线在对称轴左侧部分是上升的