题目内容

【题目】如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,若ED:DC=2:3,△DEF的面积为8,则平行四边形ABCD的面积为

【答案】60
【解析】解:∵四边形ABCD是平行四边形, ∴AB=DC,AD∥BC,AB∥CD,
∵ED:DC=2:3,
∴ED:CE=2:5,ED:AB=2:3,
∵AD∥BC,AB∥CD,
∴△DEF∽△CEB,△DEF∽△ABF,
=( 2=( 2= =( 2=( 2=
∵△DEF的面积为8,
∴△CEB的面积为50,△ABF的面积为18,
∴四边形DFBC的面积为50﹣8=42,
∴平行四边形ABCD的面积为42+18=60,
所以答案是:60.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网