题目内容
【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴.
(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣ )作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;
(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.
【答案】
(1)
解:设过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴的抛物线为y=ax2,
则﹣6 =36a,
∴a=﹣ ,
∴y=﹣ x2
(2)
解:如图2中,作CF⊥MN于F,设⊙D与x轴的交点为(x,0),D(m,﹣ m2).
则有(x﹣m)2+( m2)2=m2+(﹣ m2+ )2,
整理得x2﹣2mx+m2﹣3=0,
∴x=m+ 或m﹣ ,
∴N(m+ ,0),M(m﹣ ,0)
∴MN=2 ,
在Rt△CFN中,∵∠CFN=90°,CN=MN=2 ,CF= ,
∴CN=2CF,
∴∠CNF=30°
(3)
解:如图3中,
由题意可知平移直线CN经过点A的直线的解析式为y= x﹣8 ,
记直线y= x﹣8 与直线x=﹣3的交点为G,则G(﹣3,﹣9 ),
∵m∥x轴,且过点A(6,﹣6 ),
∴S(﹣3,﹣6 ),
∴SG=3 ,AS=9,
∴tan∠2= = ,
∴∠2=60°,
∴∠1=30°,
∵∠QRS=60°
∴∠QRS=∠2,
∵∠RSQ+∠QSP=∠2+∠SPG,∠QSP=∠2=60°,
∴∠3=∠4,
在△SQR和△PSG中,
,
∴△SQR≌△PSH
∴SR=PG,RQ=SG,
∴RQ=SG=3 ,作DQ⊥n于D,
∴QRD=60°,
∴DQ= DR= RQ= ,
∴RD= QR= ,
∵n是过(﹣3,0)与y轴平行的直线,设R(﹣3,b),记n与x轴的交点为M,则RM=b,
∵S(﹣3,﹣6 ),
∴MS=6 ,
∴SR=RM+MS=b+6 =PG,作PH⊥n于H,
∵∠2=60°,
∴GH= PG= (b+6 ),
∴MH=MG﹣HG=9 ﹣ (b+6 )=6 ﹣ b,
∴P(6+ b, b﹣6 ),
∵K是PR中点,
∴K( + b, b﹣3 ),
为了方便,记K(x,y),即x= + b,y= b﹣3 ,消去b得y= x﹣ ,
∴中点K在直线y= ﹣ 上运动,
由 消去y得到x2+6x﹣27=0,
∴x=3或﹣9(舍弃),
∴x=3,代入x= + b得到b=2 ,
∴RM=2 ,DM=RM﹣RD=2 ﹣ = ,
∵ ﹣3= ,
∴点Q的坐标为( , )
【解析】(1)设过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴的抛物线为y=ax2 , 点A代入求出a即可.(2)如图2中,作CF⊥MN于F,设⊙D与x轴的交点为(x,0),D(m,﹣ m2),根据半径相等列出方程,求出M、N坐标,推出MN=2 ,在Rt△CFN中,由CN=2CF推出∠FNC=30°即可解决问题.(3)如图3中,由题意可知平移直线CN经过点A的直线的解析式为y= x﹣8 ,记直线y= x﹣8 与直线x=﹣3的交点为G,则G(﹣3,﹣9 ),由△SQR≌△PSH,推出SR=PG,RQ=SG,推出RQ=SG=3 ,作DQ⊥n于D,记n与x轴的交点为M,则RM=b,由S(﹣3,﹣6 ),推出MS=6 ,可得P(6+ b, b﹣6 ),再求出PR中点k坐标,证明k在直线y= ﹣ 上运动,由 消去y得到x2+6x﹣27=0,x=3或﹣9(舍弃),x=3,代入x= + b得到b=2 ,由此即可解决问题.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.