题目内容

【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

【答案】C

【解析】∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.

∵△AEF等边三角形,

∴AE=EF=AF,∠EAF=60°.

∴∠BAE+∠DAF=30°.

在Rt△ABE和Rt△ADF中,

,

Rt△ABE≌Rt△ADF(HL),

∴BE=DF(故①正确).

∠BAE=∠DAF,

∴∠DAF+∠DAF=30°,

即∠DAF=15°(故②正确),

∵BC=CD,

∴BC-BE=CD-DF,即CE=CF,

∵AE=AF,

∴AC垂直平分EF.(故③正确).

设EC=x,由勾股定理,得

EF=x,CG=x,

AG=AEsin60°=EFsin60°=2×CGsin60°=x,

∴AC=

∴AB=

BE=

∴BE+DF= x,(故④错误),

∵S△CEF=

S△ABE=

∴2S△ABE==S△CEF,(故⑤正确).

综上所述,正确的有4个,

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网