题目内容

【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.

(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=,求线段OE的长.

【答案】
(1)

解:∵∠CAB=∠ACB,

∴AB=CB,

ABCD是菱形.

∴AC⊥BD


(2)

解:在Rt△AOB中,cos∠CAB==,AB=14,

∴AO=14×=

在Rt△ABE中,cos∠EAB==,AB=14,

∴AE=AB=16,

∴OE=AE﹣AO=16﹣=


【解析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;
(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网