题目内容
【题目】定义:若一个四边形能被其中的一条对角线分割成两个相似三角形,则称这个四边形为“友谊四边形”.我们熟知的平行四边形就是“友谊四边形”,
(1)如图1,在4×4的正方形网格中有一个Rt△ABC,请你在网格中找格点D,使得四边形ABCD是被AC分割成的“友谊四边形”,(要求画出点D的2种不同位置)
(2)如图2,BD平分∠ABC,BD=4,BC=8,四边形ABCD是被BD分割成的“友谊四边形”,求AB长;
(3)如图3,圆内接四边形ABCD中,∠ABC=60,点E是的中点,连结BE交CD于点F,连结AF,∠DAF=30°
①求证:四边形ABCF是“友谊四边形”;
②若△ABC的面积为6,求线段BF的长.
【答案】(1)详见解析;(2)AB=6或8.(3)①详见解析;②2
【解析】
(1)由题意可找到点D位置;
(2)分△ABD∽△CBD,△ABD∽△DBC两种情况讨论,由相似三角形的性质可求AB的长度;
(3)①由题意可得∠ABE=∠EBC=30°,由三角形内角和定理和圆的内接四边形性质可得∠BAF=∠BFC,可证△ABF∽△FBC,即四边形ABCF是“友谊四边形”;
②由相似三角形的性质可得BF2=ABBC,由三角形面积公式可求AB×BC=6,即可求BF的长.
解:(1)画出点D的2个位置.
(2)∵四边形ABCD为被BD分割的友谊四边形
∴△ABD与△DBC相似,
若△ABD∽△CBD
则
∴AB=BC=8
若△ABD∽△DBC
则
∴AB==6
综上所述:AB=6或8.
(3)①∵E是的中点,
∴∠ABE=∠CBE=∠ABC=30°,
∴∠C+∠BFC=150°,
∵四边形ABCD内接于圆O,
∴∠BAD+∠C=180°,
∵∠DAF=30°,
∴∠C+∠BAF=150°,且∴∠C+∠BFC=150°,
∴∠BAF=∠BFC,且∠ABE=∠CBE
∴△ABF∽△FBC.
∴四边形ABCF为友谊四边形
②如图,过点A作AG⊥BC交BC与G,连接AC,
∵△ABF∽△FBC,
∴
∴BF2=ABBC,
∵S△ABC=BC×AG=BC×AB×sin60°=6
∴AB×BC=6
∴AB×BC=24=BF2,且BF>0,
∴BF=2
【题目】王老师将个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数 | ||||||
摸到黑球的次数 | ||||||
摸到黑球的频率 |
补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________(精确到0.01);
估算袋中白球的个数;
在的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.
【题目】某中学为了了解“校园文明监督岗”的值围情况,对全校各班级进行了抽样调查,过程如下:
收集数据:从三个年级中随机抽取了20个班级,学校对各班的评分如下:
92 71 89 82 69 82 96 83 77 83
80 82 66 73 82 78 92 70 74 59
整理、描述数据:按如下分数段整理、描述这两组样本数据:
分数段 | |||||
班级数 | 1 | 2 | a | 8 | b |
说明:成绩90分及以上为优秀,分为良好,分为合格,60分以下为不合格
分析数据:样本数据的平均数、中位数、众数、极差如下表,绘制扇形统计图:
平均数 | 中位数 | 众数 | 极差 |
79 | c | 82 | d |
请根据以上信息解答下列问题:
填空:______,______,______,______.
若我校共120个班级,估计得分为优秀的班级有多少个?
为调动班级积极性,决定制定一个奖励标准分,凡到达或超过这个标准分的班级都将受到奖励如果要使得半数左右的班级都能获奖,奖励标准分应定为多少分?并简述其理由