题目内容
【题目】如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,kx+b<的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
【答案】(1)y=,y=﹣x+5;(2)0<x<1或x>4;(3)点P的坐标为(,0)
【解析】
(1)把A(1,4)代入y=即可求出反比例函数的解析式,再把B(4,n)代入y=得到B(4,1),把A(1,4),B(4,1)代入y=kx+b求得一次函数的解析式;
(2)根据图象以及A、B两点的横坐标即可得出;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
解:(1)把A(1,4)代入y=,得:m=4,
∴反比例函数的解析式为y=;
把B(4,n)代入y=,得:n=1,
∴B(4,1),
把A(1,4)、(4,1)代入y=kx+b,
得:,
解得:,
∴一次函数的解析式为y=﹣x+5;
(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;
∴当x>0时,kx+b<的解集为0<x<1或x>4;
(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,
∵B(4,1),
∴B′(4,﹣1),
设直线AB′的解析式为y=px+q,
∴,
解得,
∴直线AB′的解析式为y=﹣x+,
令y=0,得﹣x+=0,
解得x=,
∴点P的坐标为(,0).
练习册系列答案
相关题目