ÌâÄ¿ÄÚÈÝ
Èçͼ1£¬Ö±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏB=90?£¬AD=10£¬CD=4£¬BC=6£¬EÊÇBCµÄÖе㣬¶¯µãP´ÓµãA³ö·¢£¬ÑرßABÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòÖÕµãBÔ˶¯£¬É趯µãPÔ˶¯µÄʱ¼äΪtÃ룮
£¨1£©ÇóÏ߶ÎABµÄ³¤£»
£¨2£©µ±¡÷PBEÓë¡÷DCEÏàËÆʱ£¬ÇótµÄÖµ£»
£¨3£©Èçͼ2£¬Á¬½ÓPD£¬ÒÔPDËùÔÚÖ±ÏßΪ¶Ô³ÆÖá×÷Ï߶ÎBCµÄÖá¶Ô³ÆͼÐÎB¡äC¡ä£¬ÈôµãC¡äÂäÔÚÏ߶ÎADÉÏ£¬ÔòtµÄֵΪ
£¨1£©ÇóÏ߶ÎABµÄ³¤£»
£¨2£©µ±¡÷PBEÓë¡÷DCEÏàËÆʱ£¬ÇótµÄÖµ£»
£¨3£©Èçͼ2£¬Á¬½ÓPD£¬ÒÔPDËùÔÚÖ±ÏßΪ¶Ô³ÆÖá×÷Ï߶ÎBCµÄÖá¶Ô³ÆͼÐÎB¡äC¡ä£¬ÈôµãC¡äÂäÔÚÏ߶ÎADÉÏ£¬ÔòtµÄֵΪ
10
10
£¨Ö±½Óд³ö´ð°¸¼´¿É£©£®·ÖÎö£º£¨1£©×÷DF¡ÍABÓÚF£¬¸ù¾ÝÒÑÖªÌõ¼þ¿ÉÒԵóöËıßÐÎBCDFÊǾØÐξͿÉÒԵóöBF=CD£¬ÔÙÓɹ´¹É¶¨ÀíÇó³öAFµÄÖµ¾Í¿ÉÒԵóö½áÂÛ£»
£¨2£©´Ó¡÷PBE¡×¡÷DCEºÍ¡÷PBE¡×¡÷ECDÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÒԵóö½áÂÛÇó³ötµÄÖµ£»
£¨3£©Èçͼ4£¬¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊÏÈÇó³öAC¡äµÄÖµ£¬ÔÙÓÉÈý½Çº¯ÊýÖµÇó³öGC¡ä£¬AGµÄÖµ£¬ÔÙÖ¤Ã÷¡÷AC¡äG¡×¡÷PB¡äG£¬ÓÉÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÒÔÇó³öPGµÄÖµ£¬´Ó¶øÇó³öAPµÄÖµ¾Í¿ÉÒÔÇó³ötµÄÖµ£®
£¨2£©´Ó¡÷PBE¡×¡÷DCEºÍ¡÷PBE¡×¡÷ECDÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÒԵóö½áÂÛÇó³ötµÄÖµ£»
£¨3£©Èçͼ4£¬¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊÏÈÇó³öAC¡äµÄÖµ£¬ÔÙÓÉÈý½Çº¯ÊýÖµÇó³öGC¡ä£¬AGµÄÖµ£¬ÔÙÖ¤Ã÷¡÷AC¡äG¡×¡÷PB¡äG£¬ÓÉÏàËÆÈý½ÇÐεÄÐÔÖʾͿÉÒÔÇó³öPGµÄÖµ£¬´Ó¶øÇó³öAPµÄÖµ¾Í¿ÉÒÔÇó³ötµÄÖµ£®
½â´ð£º½â£º£¨1£©Èçͼ1£¬×÷DF¡ÍABÓÚF£¬
¡à¡ÏAFD=¡ÏBFD=90¡ã£®
¡ßAB¡ÎCD£¬¡ÏB=90¡ã£¬
¡à¡ÏC=90¡ã£¬
¡àËıßÐÎBCDFÊǾØÐΣ¬
¡àBF=CD£¬DF=BC£®
¡ßCD=4£¬BC=6£¬
¡àBF=4£¬DF=6£®
ÔÚRt¡÷AFDÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AF=
=8£®
¡àAB=4+8=12£®
£¨2£©Èçͼ2£¬µ±PÔ˶¯tÃëʱ£¬¡÷PBE¡×¡÷DCE
¡à
=
£®
¡ßAP=t£¬
¡àBP=12-t£®
¡ßEÊÇBCµÄÖе㣬
¡àCE=BE=3£®
¡à
=
£¬
¡àt=8£»
Èçͼ3£¬µ±PÔ˶¯tÃëʱ£¬¡÷PBE¡×¡÷ECD£¬
¡à
=
¡à
=
£¬
¡àt=
£®
¡àtµÄֵΪ8»ò
£»
£¨3£©Èçͼ4£¬×÷CB¹ØÓÚPDµÄÖá¶Ô³ÆͼÐÎC¡äB¡ä½»ABÓÚµãG£¬Á¬½ÓPB¡ä£¬
¡à¡ÏDC¡äB¡ä=¡ÏC=90¡ã£¬¡ÏB¡ä=¡ÏB=90¡ã£¬C¡äD=CD=4£¬PB¡ä=PB£®
¡àAC¡ä=6£¬
Èçͼ1£¬ÔÚRt¡÷AFDÖУ¬AD=10£¬DF=6£¬AF=8£¬
tan¡ÏA=
£¬cos¡ÏA=
£®
ÔÚRt¡÷AC¡äGÖУ¬
tan¡ÏA=
=
£¬
¡à
=
£¬
¡àGC¡ä=
£¬
cos¡ÏA=
=
£¬
¡à
=
£¬
¡àAG=
£¬
¡àGP=t-
£¬PB=PB¡ä=12-t£¬
¡ß¡÷AC¡äG¡×¡÷PB¡äG£¬
¡à
=
£¬
¡à
=
£¬
¡àt=10£®
¹Ê´ð°¸Îª£º10£®
¡à¡ÏAFD=¡ÏBFD=90¡ã£®
¡ßAB¡ÎCD£¬¡ÏB=90¡ã£¬
¡à¡ÏC=90¡ã£¬
¡àËıßÐÎBCDFÊǾØÐΣ¬
¡àBF=CD£¬DF=BC£®
¡ßCD=4£¬BC=6£¬
¡àBF=4£¬DF=6£®
ÔÚRt¡÷AFDÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AF=
100-36 |
¡àAB=4+8=12£®
£¨2£©Èçͼ2£¬µ±PÔ˶¯tÃëʱ£¬¡÷PBE¡×¡÷DCE
¡à
PB |
DC |
BE |
CE |
¡ßAP=t£¬
¡àBP=12-t£®
¡ßEÊÇBCµÄÖе㣬
¡àCE=BE=3£®
¡à
12-t |
4 |
3 |
3 |
¡àt=8£»
Èçͼ3£¬µ±PÔ˶¯tÃëʱ£¬¡÷PBE¡×¡÷ECD£¬
¡à
PB |
EC |
BE |
CD |
¡à
12-t |
3 |
3 |
4 |
¡àt=
39 |
4 |
¡àtµÄֵΪ8»ò
39 |
4 |
£¨3£©Èçͼ4£¬×÷CB¹ØÓÚPDµÄÖá¶Ô³ÆͼÐÎC¡äB¡ä½»ABÓÚµãG£¬Á¬½ÓPB¡ä£¬
¡à¡ÏDC¡äB¡ä=¡ÏC=90¡ã£¬¡ÏB¡ä=¡ÏB=90¡ã£¬C¡äD=CD=4£¬PB¡ä=PB£®
¡àAC¡ä=6£¬
Èçͼ1£¬ÔÚRt¡÷AFDÖУ¬AD=10£¬DF=6£¬AF=8£¬
tan¡ÏA=
3 |
4 |
4 |
5 |
ÔÚRt¡÷AC¡äGÖУ¬
tan¡ÏA=
GC¡ä |
AC¡ä |
3 |
4 |
¡à
GC¡ä |
6 |
3 |
4 |
¡àGC¡ä=
9 |
2 |
cos¡ÏA=
AC¡ä |
AG |
4 |
5 |
¡à
6 |
AG |
4 |
5 |
¡àAG=
15 |
2 |
¡àGP=t-
15 |
2 |
¡ß¡÷AC¡äG¡×¡÷PB¡äG£¬
¡à
AG |
PG |
AC¡ä |
PB¡ä |
¡à
| ||
t-
|
6 |
12-t |
¡àt=10£®
¹Ê´ð°¸Îª£º10£®
µãÆÀ£º±¾Ì⿼²éÁËÖ±½ÇÌÝÐεÄÐÔÖÊ£¬¹´¹É¶¨ÀíµÄÔËÓã¬Öá¶Ô³ÆµÄÐÔÖʵÄÔËÓã¬ÏàËÆÈý½ÇÐεÄÅж¨¼°ÐÔÖʵÄÔËÓã¬ÔÚ½â´ðʱ֤Ã÷Èý½ÇÐÎÏàËÆÊǹؼü£¬ÔËÓÃÈý½ÇÐÎÏàËƵÄÐÔÖÊÇóÏ߶εij¤ÊÇÖص㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎDC£¬¡ÏD=90¡ã£¬ÈôAD=8£¬BC=10£¬ÔòcosCµÄֵΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|